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Static critical exponents for the two-dimensional Ising model are computed on 
a cellular automaton. The analysis of the data within the framework of the 
finite-size scaling theory reproduces their well-established values. 
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1. INTRODUCTION 

Although the conventional Monte Carlo method is the most extensively 
used method for Ising model investigations, a faster method would allow 
the computations to be extended to larger lattices. The algorithm due to 
Creutz ~1~ for the simulation of Ising model on a cellular automaton does 
not require high-quality random numbers, and it is an order of magnitude 
faster than the conventional Monte Carlo method. Compared to the Q2R 
cellular automaton model, ~21 this algorithm has the advantage of fluctuating 
internal energy which permits the computation of the specific heat in the 
same way as the susceptibility is computed from the fluctuations of the order 
parameter. The values of the static critical exponents for the two-dimen- 
sional Ising model are well established, t31 and in order for this method to be 
considered successful, it must reproduce these well-established values. For 
this purpose, the static critical exponents ct, fl, and ~,, which are related to 
the specific heat, the order parameter, and the susceptibility, are computed 
by using the algorithm due to Creutz. The details of the model are given in 
Section 2, the data are analyzed and the results are discussed in Section 3, 
and a conclusion is given in Section 4. 

t Gazi Oniversitesi, Fen-Edebiyat Fakiiltesi, Fizik B61iim~i, Teknikokullar, 06500 Ankara, 
Turkey. 

757 

0022-4715/94/051J0-0757507.00/0 ~i~ 1994 Plenum Publishing Corporation 



758 Kut lu  and Aktekin 

2. M O D E L  

Four binary bits are associated with each site of the lattice. The value 
of each site is determined from its value and those of its nearest neighbors 
at the previous time step. The updating rule, which defines a deterministic 
cellular automaton, is as follows. Of the four binary bits on each site, the 
first one is the Ising spin Bi. Its value may be 0 or 1. The Ising spin energy 
(internal energy) HI is given by 

H, = - J  y. s ,  sj (1) 
</j) 

where J is the nearest neighbor coupling constant, Si= 2 & - 1 ,  and ( l j )  
denotes the sum over all nearest neighbor pairs of sites. The second and the 
third bits are for the momentum variable conjugate to the spin (the 
demon). These two bits form an integer which can take the value 0, 1, 2, 
or 3. The kinetic energy associated with the demon H K c a n  take on four 
times these integer values. The total energy H, 

H =  H I + H K (2) 

is conserved. For a given total energy the system temperature is obtained 
from the average value of the kinetic energy. The fourth bit provides a 
checkerboard-style updating, and so it allows the simulation of the Ising 
model on a cellular automaton. The black sites of the checkerboard are 
updated and then their color is changed into white; white sites are changed 
into black without being updated. 

The updating rules for the spin and the momentum variables are as 
follows: For a site to be updated its spin is flipped and the change in the 
Ising energy (internal energy) H~ is calculated. If this energy change is 
transferable to or from the momentum variable associated with this site 
such that the total energy H is conserved, then this change is done and 
the momentum is appropriately changed. Otherwise the spin and the 
momentum are not changed. 

For the initial values all the spins are taken ordered (up or down) and 
the kinetic energy is given to the lattice via the second bits of momentum 
variables in the white sites randomly. 

The quantities computed are averages over the lattice and the number 
of time steps during which the cellular automaton develops. 

3. RESULTS A N D  D ISCUSSION 

The simulations are done on square lattices ( L x L )  with periodic 
boundary conditions. For each lattice its critical temperature Tc(L ) is 
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determined from the maxima of both the specific heat C and magnetic 
susceptibility g. For each run 50,000 time steps are enough for taking 
measurements to be used for computing equilibrium quantities. (4) The data 
are analyzed within the framework of the finite-size scaling theory. (5) 

The finite-size scaling relation for the size-dependent shifting of the 
specific heat maxima T, . (L)-  7",.(o0) oc aL  -w ' ,  with v =  1, is verified by the 
computed data and the straight line which fits to the data gives, when 
extrapolated to 1/L ~ 0, TC(~)  = 2.263. The corresponding scaling rela- 
tion for the susceptibility maxima is also verified by the data and gives the 
same value of T~(~)=2 .263  within the error limits. These values are in 
agreement with the theoretical prediction of T, . (ov)= 2.269. 

The data obtained for the order parometer M are analyzed by making 
use of the finite-size scaling plot given in Fig. 1. The data lie on a single 
curve for temperatures both above and below T c ( ~ ) =  2.263, and validate 
the finite-size scaling. For large L and so for large values x = ~ L  ~/', the 
infinite lattice critical behavior must be asymptotically reproduced, that is, 

X ( x )  ~ B x  # (3) 

for very large x. The straight line passing through the data for T <  Tc(oo) 
in Fig. 1 describes Eq. (3). The straight line passing through the data for 
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Fig. I. Finite-size scaling plot for the order parameter M for T< T,.(oo) (fl=0.125) and for 
T> T,.(oo) (fl' =0.875); e= [T -  T~(~)]/T,.(oo). 
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Fig. 2. Finite-size scaling plot for the susceptibility Z. (a) T < T,.( oo ), e = [ T -  To( oo ) ]/T,.( co ); 
(b) T>  T~(oo), e '=  I T -  Tc(oo) ] /T .  
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T >  Tc(oo) behaves according to this equation with f l '=  1 - f l  replacing fl 
and some other constant replacing B. Thus, the data for M are in agree- 
ment with the theoretical value fl=0.125 for T <  Tc(~)  and fl '=0.875 for 
T >  T,.(~ ). 

Finite-size scaling plots of the susceptibility are shown in Fig. 2 
together with the straight lines describing the theoretically predicted 
behavior for large x, 

Y(x) oc Gx -~" (4) 

The scaling of the susceptibility data agrees well with the asymptotic form, 
and so with the critical exponent 7=1.75 for both T > T c ( ~ )  and 
T <  Tc(~).  

To get another estimation for these critical exponents, the finite-size 
scaling relations at T, . (~)  are used. Since the temperature is a computed 
quantity in the present algorithm, getting values of the quantities at a given 
temperature is not straightforward. This difficulty is overcome in either of 
the following ways: (a) If the curve for the temperature dependence of the 
quantity is smooth enough, the data are interpolated between two values 
at temperatures above and below the given temperature, assuming that the 
temperature dependence within the small interval (~0.01) between these 
two values is linear. (b) If the curve for the quantity is not smooth enough, 
an average value is obtained by using the values of this quantity within an 
interval (~0.005) above this temperature; similarly, an average value 
below this temperature is found. The average of these two values is 
assigned to the quantity as its value at the given temperature. These two 
methods are applied for getting values for M at T,.(~ ). The slope obtained 
from the log-log plot of the scaling relation corresponding to this quantity 
gives fl/v=0.135 for method (a), and method (b) results in fl/v=O.123. As 
is seen from these values, the result given by method (b) is in very good 
agreement with the theoretical value f l /v=0.125. These two values also 
indicate that the computed curve for M is not smooth enough to apply the 
interpolation. Since the curves for the temperature dependence of X and C 
are not smooth enough, method (b) is adopted for getting their values at 
T, . (~)  in plotting the respective scaling relations corresponding to these 
quantities. From the slopes of the straight lines the following values are 
obtained: ),Iv = 1.89 and ct/v =0.064. Both of these values are higher than 
the theoretical va.lues, ~,/v = 1.75 and o~/v = 0 (log), respectively. There is an 
alternative expression for computing X. This results from the fact that for 
T~> T,.(oo), ( M )  vanishes, and thus X involves only ( M 2 ) .  The log-log 
plot of these data against L gives ~,/v = 1.75. This agrees very well with the 
theoretical prediction. 
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Fig. 3. Variation of the critical exponent filL) for the order parameter with I/L. The 
extrapolation to I/L--*O gives fi(~,)=0.126 IT< T,.(L)] and ff(~)=0.868 I-T> T,.IL)]. 

As a third estimation, the slopes obtained from the log-log plots of the 
scaling relations for the maxima of the specific heat and the susceptibility 
at their critical temperatures T,.(L) are used. The slopes of the straight lines 
give ~/v=0.035,  and y/v= 1.85. Compared to the scaling relations at 
Tc(oo), these scaling relations improve c~/v and 7/v toward the theoretical 
values. 

As a fourth way of estimation, the critical exponents fl(L) and y(L) for 
each lattice are obtained from the log-log plots of the following relations: 

M oz I -T-  T,,(L)] # (5) 

kTx oz [ T -  T,.(L)]  - r  (6) 

The critical exponents for each lattice are computed by using the data 
within the interval 0.015 < T -  Tc(L)/T,.(L)< 0.15, and a best fit to straight 
lines. These critical exponents are plotted against 1/L (Figs. 3 and 4). The 
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Fig. 4. Variation of the critical exponent },(L) for the susceptibility with I/L. The extra- 
polation to 1/L-,O gives ),(oo)= 1.75 IT< T~(L)] and ),'(oo)= 1.79 [T> T~(L)]. 
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data lie on straight lines, and their extrapolations to 1/L - ,  0 give/3 =0.126 
(0.868) and y =  1.75 (1.79) for T <  T,.(L) [ T >  T,.(L)]. These values are in 
very good agreement with the theoretical ones. An overall error of about 
3 % is estimated for the values of the critical exponents. 

4. C O N C L U S I O N  

In this note the static critical exponents ~,/3, y for the two-dimensional 
Ising model have been computed on a cellular au tomaton  by using the 
algorithm due to Creutz. The data are analyzed according to the finite-size 
scaling theory. Several independent estimations for these critical exponents 
within this theoretical framework are in good agreement with each other 
and with their theoretical values within the error limits. However, the 
critical exponent ~ for the specific heat deserves a separate treatment. 
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